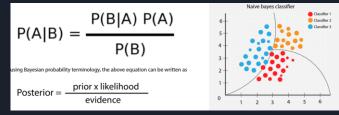
Algorithms

Alex, Jung, Muhamed, Pallavi

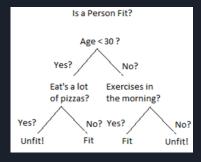
Anomaly detection by Classification

Finding anomalous category of data using data classification.

- Rule Based if/then -> Rule tree conditions(T/F)
- Bayesian calculates statistical probability

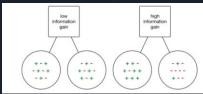


Decision Tree



Decision Tree

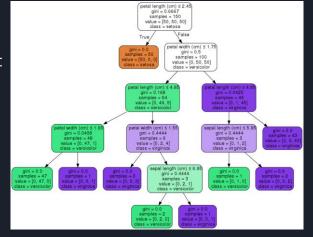
- Induction
 - O Creating the tree based on the data.
 - Using greedy algorithm, select best feature to split the tree.



- Pruning
 - O Removing the unnecessary branches.
 - Use greedy algorithm to evaluate each rules by removing one, and select the most effective ones.

- Pros
 - O Easy to understand.
 - O Requires very little data preparation.
 - Cost of creating a tree is log(N) which is little.
- Cons
 - O Overfitting is common
 - O If training dataset is biased, the result will be biased too. Needs class balancing to mitigate the effect.
 - O Suitable to machine created logs. Low performance for Natural Language.

Iris dataset

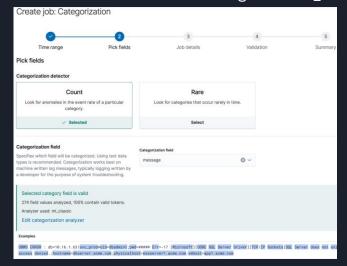


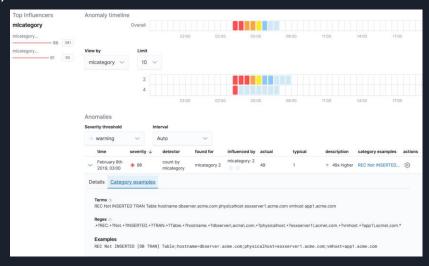
Anomaly detection by Categorization

• In Kibana, there is a categorization wizard to help you create this type of anomaly detection job.

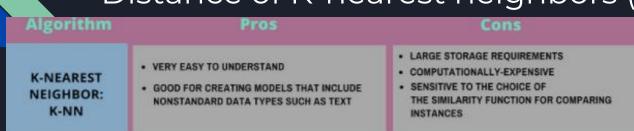
Using the composite decision tree algorithm called **Boosted tree regression** model

- Analyzes the content in the message field to find out the machine generated log's category.
- Can customize the categorization_analyzer to have better results.

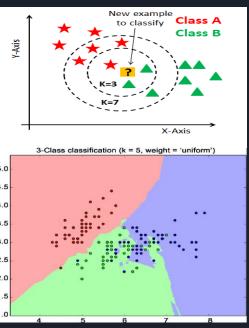




Distance of K-nearest neighbors (KNN)



- Density-based anomaly detection methods
- Continuous data uses Euclidean distance
- Discrete data uses Hamming distance
- Creates models for non-standard data
- It's a supervised algorithm
- Great for fraud detection
- Business and Finance
- Little to no training phase
- Benchmark for other algorithms(Support Vehicle Machine or Artificial Neural Network)
- Good only for prediction and Quick calculation time



Local Outlier Factor

- Density based method
- Based on this approach, a metric is computed called local outlier factor (lof) for each data point.
 - ^ LOF = data point is more outlying
- Computed by taking the average ratio of the local reachability density of a point and its k-nearest neighbors.
- Contamination: proportion of the most isolated points (points that have the highest LOF scores) to be predicted as anomalies.

Pros:

 Well-known and good algorithm for local anomaly detection

Cons:

- Only relies on its direct neighborhood
- Performs poorly on datasets with global anomalies

Osti.gov: Research by IEEE members: an event detection LOF is proposed to detect abnormal events in power systems.

Local Outlier Factor

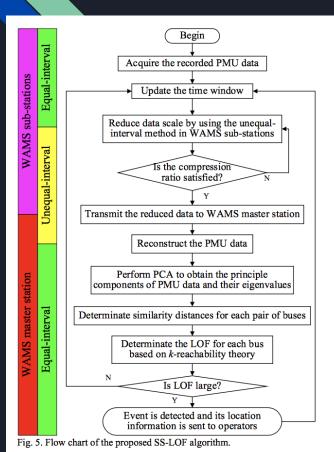


TABLE VIII

COMPARISONS OF THE PROPOSED SS-LOF ALGORITHM WITH THE OTHERS

Functions	VMD [14]	MW-PCA [16]	RQA [21]	MVEE [23]	ST-LOP [35]	Proposed SS-LOF
Event detection	√	√	✓	✓	√	✓
Multiple events		✓	✓	✓		✓
Event location			√		✓	✓

Support Vector Machine

- Classification via hyperplane
- Finding the optimal hyperplane
- Supervised or unsupervised
- One-class SVM

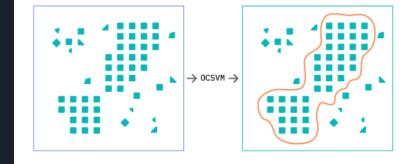


Table 4: Comparing the AUC of SVM	pased algorithms against other	anomaly detection algorithms
-----------------------------------	--------------------------------	------------------------------

Dataset	One-class	Robust one-class	Eta one-class	k-NN	LOF	COF	INFLO	LoOP	Histogram	CBLOF	u-CBLOF	LDCOF
ionosphere	0.9878	0.9956	0.9972	0.9933	0.9178	0.9406	0.9406	0.9211	0.7489	0.3183	0.9822	0.9306
shuttle	0.9936	0.9597	0.9941	0.9208	0.6072	0.5612	0.5303	0.5655	0.9889	0.8700	0.8739	0.5312
breast-cancer	0.9843	0.9734	0.9833	0.9826	0.9916	0.9888	0.9922	0.9882	0.9829	0.8389	0.9743	0.9804
satellite	0.8602	0.8861	0.8544	0.9003	0.8964	0.8708	0.8592	0.8664	0.8862	0.4105	0.9002	0.8657

At test time, An OCSVM model classifies data points outside the learned decision boundary as anomalies (assigned class of -1).

Autoencoder

	False Positive Rate(%)	Detection Accuracy(%)
k-NN	38.02	88.91
SVM	6.91	92.98
TANN	3.83	96.91
AE	4.09	95.85
CAE	3.44	96.87

- Deep Learning
- Dimensionality reduction
- Reconstruction error as AS
- Noise removal
- Importance of training

